
44 The Delphi Magazine Issue 46

Distributed Application
Development With Packages
by Brian Long

These days, a common reaction
to hearing the term distributed

application is to think of an applica-
tion built using DCOM or CORBA,
spread across a number of
machines. This is understandable,
as a DCOM or CORBA application is
indeed distributed over potentially
many different machines, with the
various sections communicating
using some appropriate protocol.

But one of the joys of any spoken
language is the ability to interpret
things differently depending upon
context. This article looks at a dif-
ferent interpretation of distributed
application development: develop-
ing an application designed to run
on a single machine but distributed
over several binary files. Clearly
this is not a new subject at all, as
applications have been split into
executables and DLLs for years,
but we will look at an alternative
spin on the situation.

In this case, we will be building
an application using Delphi pack-
ages, and the point is to show how
it is possible to build the applica-
tion in such a way that it can be
extended in functionality after
having been deployed by the devel-
oper(s). We will define guidelines
for writing add-in modules. We will
also see how the original developer
can just open the doors to allow
third party developers to modify
the program in ways previously
unimaginable with ordinary DLLs.

Since the discussion revolves
around packages, and these were
introduced to us by Delphi 3, the
scope of this article is limited to
Delphi 3 or later. Rather than delv-
ing into the subject and principles
of using packages in your develop-
ment cycle, I will instead refer you
to Under Construction: Delphi 3
packages by Bob Swart and Chad Z
Hower in Issue 23, which gives an
excellent grounding in the subject.
Additionally, I gave an overview of

Delphi’s package technology in
The Delphi 3 Novelty Store: 1 in
Issue 20.

Just before moving on, allow me
to make a couple of points. Some
time after Delphi 3 was released
Borland uploaded a sample appli-
cation to their website showing a
simple use of dynamic package
loading. At the time of writing this
can be found at

www.borland.com/devsupport/
delphi/download_files/
pkgdemo.zip.

The package mechanism provides
a superb opportunity for dynami-
cally extending the functionality of
an application, and I have seen
nothing in print on this aspect of
package usage. Or at least I hadn't
until I had finished this article and
found Steve Scott's coverage of
writing plug-ins in the March/April
1999 issue of the UK-BUG newslet-
ter. Because of this lack of cover-
age I suspect this powerful facility
is very much under-used.

Before looking in detail at the
subject, a good part of this article
will attempt to establish some
groundwork on the subject, look-
ing at an existing application for
familiarisation. Only then will we
focus on a sample implementation.

One final thing before proceed-
ing. Whilst these techniques will
work with Delphi 3 and Delphi 4,
they also work perfectly well with
C++Builder 3 and 4. In fact, pack-
ages written in either C++Builder 4
or Delphi 4 can be used by applica-
tions written in either product.

A Fine Example
To get an idea of some ways that
we could proceed, let’s consider
Delphi itself. As you probably
know, Delphi is a splendid example
of an application written in Delphi.
Also, as you should know, Delphi is

very extensible and customisable.
In both Delphi 3 and 4, which (as I
write) are the only versions that
support development of packages,
you extend the environment’s
capabilities by writing code that is
installed in design-time packages.
Design-time packages are installed
into the IDE using the dialog
invoked through Component |
Install Packages... (see Figure 1).

These design-time packages are
distinguished from runtime pack-
ages by the fact that Delphi explic-
itly loads design-time packages,
whereas runtime packages are typ-
ically loaded implicitly, either by
your own applications or by
design-time packages. So, pack-
ages used directly by Delphi are
design-time packages. Packages
used by your app, or indirectly by
Delphi, are runtime packages.

For another look at the distinc-
tion between design-time and
runtime packages, you can check
the Delphi Clinic from Issue 30.
However, in brief, runtime pack-
ages typically implement function-
ality required by your application
to operate. This functionality
could be functions, procedures,
classes, forms or whatever may be
compiled into a unit. Design-time
packages tend to implement

➤ Figure 1: Delphi’s IDE
dynamically loads packages.

June 1999 The Delphi Magazine 45

functionality (in the Delphi IDE)
that is more desired than required.
You can ask Delphi to load up a
design-time package whenever you
like, you can also ask it to unload it
at any time.

Delphi Design-Time
Packages: What Do They Do?
So the point being made above is
that design-time packages can be
used to add functionality that is
not so much required by the pro-
gram to operate, but is potentially
useful to have. Like what?

Okay, there is a list of things that
packages can do to Delphi, typi-
cally involving installing some-
thing. All the documented and
advertised facilities are based
upon a registration routine. As the
IDE Dissatisfaction entry in the
Delphi Clinic from Issue 43 dis-
cussed, any unit that goes into a
package and needs some initialis-
ation or registration code to be
executed can implement a routine
called Register. As long as this is
declared in the interface part of
the unit, Delphi will locate the rou-
tine when the package containing
the unit is loaded, and call it.

And now onto the list of the more
common things we can do in a
design-time package. This will
allow us to see some of the tech-
niques used by Delphi to manage
the things that get installed. These
techniques form the basis for some
of the mechanisms for our own dis-
tributed and extensible applica-
tion development framework.

Installing Components
Firstly, the main thing that most
people know how to do is to write
and install a component class. The
class type is passed to the
RegisterComponents routine (or
more rarely, the RegisterNoIcon
routine) in the Classesunit in order
for Delphi to be notified of its exis-
tence. The RegisterComponents (or
RegisterNoIcon) call is made from
within the Register routine.

These two component registra-
tion routines are both imple-
mented in the Classes unit, but do
very little (Listing 1). Assuming an
appropriate non-local procedural
variable is non-nil, the parameters

are passed straight through, other-
wise an exception is raised.

If you were to call either of these
two routines in a normal applica-
tion, the procedural variables
would have their default nil
values, and you would get an
exception. When a design-time
package calls the routines within
the IDE, no exception occurs. This
is because some internal IDE unit
has set the procedural variables to
refer to some internal IDE routines.
Presumably the routine assigned
to RegisterNoIconProc adds the var-
ious classes to an internal list of
maintained component types
(instances of which can be
accessed from the Object Inspec-
tor). The RegisterComponentsProc
will do the same, but additionally
do the extra work required to get
the components showing on the
component palette.

Exactly the same approach is
used when installing other things
into the IDE, such as custom mod-
ules or property mappers. The
details of these things themselves
are not important, as we are only
looking at how the IDE manages to
keep track of installed items.

Installing Property Editors
When you write a new component
class and want to be nice to the
potential users of your compo-
nents, you write property editor
classes as well, inheriting from one
of the TPropertyEditor class
descendants defined in the
DsgnIntf Open Tools API unit. This
class, as well as details of the class
whose property you are supplying
an editor for, plus information on

that property are passed to
RegisterPropertyEditor, whose
implementation is in Listing 2.

You can see that in this particu-
lar case, there are no internal sub-
routines at work. Instead, the unit
defines a list and the Register
PropertyEditor routine fills it with
allocated records. This unit,
DsgnIntf, is contained within the
VCL30.DPL or VCL40.BPL package,
which itself is a required package
of both the Delphi IDE and any
package that you write yourself. In
other words, your registration
code causes records to be added
to a list that Delphi can examine
whenever it wishes to.

Installing Component Editors
Another nicety people do for
custom component users is to
install custom component editors,
new items added onto a compo-
nent’s context menu whilst on the
form designer. Listing 3 shows you
that registered component editors
are managed in just the same way
as custom property editors, using
a list of records.

Installing Experts
One way of installing something
more dramatic than a component
(or its support tools, the property
editor and component editor) is to
install an expert. For this, you
inherit a class from the abstract
TIExpert class, defined in the
ExptIntf unit. To let Delphi know
about it, you create an instance of
the class and pass it to
RegisterLibraryExpert. This goes

resourcestring
SRegisterError = 'Invalid component registration';

var
RegisterComponentsProc: procedure(const Page: string;
ComponentClasses: array of TComponentClass) = nil;

RegisterNoIconProc:
procedure(ComponentClasses: array of TComponentClass) = nil;

procedure RegisterComponents(const Page: string;
ComponentClasses: array of TComponentClass);

begin
if Assigned(RegisterComponentsProc) then
RegisterComponentsProc(Page, ComponentClasses)

else
raise EComponentError.Create(SRegisterError);

end;
procedure RegisterNoIcon(ComponentClasses: array of TComponentClass);
begin
if Assigned(RegisterNoIconProc) then
RegisterNoIconProc(ComponentClasses)

else
raise EComponentError.Create(SRegisterError);

end;

➤ Listing 1

46 The Delphi Magazine Issue 46

back to the component registra-
tion approach and uses an internal
procedural variable, but this time
the routine takes a reference to an
actual object instance, rather than
just a class reference.

Version 4 introduced a new
Open Tools API unit, ToolsAPI, that
allows you to write experts (now
called wizards) using supplied
interfaces. Listing 5 shows the par-
allel support for installing wizards
using a reference to an interface
implemented by an instance of a
wizard object; again, not a class
reference.

Package Registrations
The registration of property edi-
tors and component editors
causes code in DsgnIntf (in the
main VCL package) to add relevant
structures to a list, also defined in
this unit. The registration of com-
ponent classes and expert objects
involves calling a procedural vari-
able, set up by the IDE (sometimes

called a function pointer callback).
With one approach (property/
component editors) you can
clearly see the implementation and
maintenance code for the lists.
However, Delphi adds a level of
abstraction in the case of compo-
nent classes and expert objects.
Internally the same sort of
approach is used: there is a list
being maintained, regardless of
where it is.

There is a reason for the differ-
ence in approach. The property/
component editors are not used as
soon as they are registered, but
later on, when some object is
selected on the form designer. On
the other hand, as soon as compo-
nent classes are registered, they
are used by being installed on the
component palette.

Similarly, when experts are reg-
istered, they are immediately
installed into the IDE UI. In order to
achieve this, the code that sets up
the component classes and expert

objects must explicitly manipulate
the IDE. To avoid having all this IDE
manipulation code in the VCL
package, it is left in the main IDE
application. The IDE simply sets a
package function pointer variable
to point to one of its own routines.

This is important to bear in mind
when designing your own dynamic
packages. If they are going to be
registering things, you will need to
consider whether the registered
item will need to affect the main
application immediately. If so, the
function pointer callback
approach is a good idea. If not,
then leave the list manipulation
code in the static package, the one
required by the application.

Customising Tooltips
This was not really designed for
extending the IDE through pack-
ages, but the principle can be used
for exactly that purpose.

The Controls unit of the VCL (in
VCL30.DPL or VCL40.BPL) defines a
class THintWindow inherited from
TCustomControl. This is a real,
usable class, not an abstract class
as in the case of experts. The
reason this class is fully imple-
mented is because it does a job,
and it is used for the job it per-
forms. As discussed in Hints With
Attitude in Issue 16, THintWindow
implements the hint window used
for standard tooltips. However, as
that article also explains, you can
customise the hint windows, with-
out the VCL knowing about it,
thanks to the cunning way things
have been organised by Borland.

As well as THintWindow, a class
type, the Controls unit also defines
THintWindowClass, a class reference
type:

type
THintWindowClass =
class of THintWindow;

A variable defined of this type can
be assigned THintWindow (yes, you
can assign it a class) or any class
inherited from THintWindow. The
Forms unit declares a variable
HintWindowClass of type:

var HintWindowClass:

THintWindowClass = THintWindow;

type
PPropertyClassRec = ^TPropertyClassRec;
TPropertyClassRec = record
Group: Integer;
PropertyType: PTypeInfo;
PropertyName: string;
ComponentClass: TClass;
EditorClass: TPropertyEditorClass;

end;
var PropertyClassList: TList = nil;
procedure RegisterPropertyEditor(PropertyType: PTypeInfo; ComponentClass: TClass;
const PropertyName: string; EditorClass: TPropertyEditorClass);

var P: PPropertyClassRec;
begin
if PropertyClassList = nil then
PropertyClassList := TList.Create;

New(P);
P.Group := CurrentGroup;
P.PropertyType := PropertyType;
P.ComponentClass := ComponentClass;
P.PropertyName := '';
if Assigned(ComponentClass) then
P^.PropertyName := PropertyName;

P.EditorClass := EditorClass;
PropertyClassList.Insert(0, P);

end;

type
PComponentClassRec = ^TComponentClassRec;
TComponentClassRec = record
Group: Integer;
ComponentClass: TComponentClass;
EditorClass: TComponentEditorClass;

end;
var ComponentClassList: TList = nil;
procedure RegisterComponentEditor(ComponentClass: TComponentClass;
ComponentEditor: TComponentEditorClass);

var
P: PComponentClassRec;

begin
if ComponentClassList = nil then
ComponentClassList := TList.Create;

New(P);
P.Group := CurrentGroup;
P.ComponentClass := ComponentClass;
P.EditorClass := ComponentEditor;
ComponentClassList.Insert(0, P);

end;

➤ Above: Listing 2 ➤ Below: Listing 3

June 1999 The Delphi Magazine 47

Notice that by default it is initial-
ised with THintWindow, but there is
nothing stopping you replacing
this with any custom class inher-
ited from THintWindow. When the
Application object needs a tooltip,
it executes this statement:

FHintWindow :=
HintWindowClass.Create(Self);

This calls the constructor of the
appropriate class as referenced by
HintWindowClass. Fortunately, all
classes inherited from TComponent
(including THintWindow) have poly-
morphic constructors. This fact
means that no matter what class is
referenced by the class reference
variable, its own constructor will
be executed (as opposed to
THintWindow’s constructor being
called regardless, which would
happen if the constructor were not
polymorphic).

This business of having a
polymorphic constructor seems to
confuse a lot of people. To get all
the low level details on why this is
possible, and in fact necessary, for
Delphi to work, have a flip through
my Fatal Startup Error article in
Issue 30. Also, if polymorphism is
not your forté, you could take a
look at the Virtual and Override
Clarification entry in Issue 12’s
Delphi Clinic.

If you consider this idea, you
could do much with it. If an applica-
tion uses some custom object,
then you can define a class refer-
ence type, and an initialised
variable of that type whose con-
structor gets called. Make sure the
constructor is polymorphic and
then any installed packages can
simply update the class reference
variable to refer to a new class and
the program will be given a new
super-duper version of the
expected object.

Arbitrary Add-In Packages
Another way of extending the IDE’s
functionality is to write an add-in
package. Just as Delphi and your
package share the same Classes
unit (variables and all), the same is
true of the Forms unit (and anything
else in the VCL). The point is that
Delphi’s Application object is your

own Application object. The
MainForm property of your Applica-
tion object is therefore the Delphi
main window.

After absorbing this point, you
tend to realise what can be done
here. All you need to do is to write
appropriate code that starts from
the Application object, and you
can tap into much of the IDE’s
make-up.

My article Delphi 3 Add-In Pack-
ages: Digging The Dirt On
Archaeopteryx from Issue 27 dis-
cusses this concept in depth. We
can apply exactly the same tech-
niques to any other package-based
application that can load up an
arbitrary package.

Incidentally, if any Delphi 4 users
are missing the Archaeopteryx
functionality, and haven't already
switched to the colossally more
functional GExperts, I have finally
got it working in Delphi 4 (and
C++Builder 4). You can find the
binary file in Dinosaur.zip on this
month's disk, and the source in the
file DinoSource.zip.

Forget The IDE...
What About Our Application?
So far we have looked at a number
of ways in which Delphi sets itself
up to be customised by add-in
packages. We will now need to turn

our attention to how we can imple-
ment these ideas in our own appli-
cations, and what problems these
may spring upon us.

First, we need to focus on what is
required of an add-in package.

Requirements Of
Dynamically Loaded Packages
The most important thing about a
package is that it if it gets loaded
explicitly by the application, it
must also be explicitly unloaded
by the application. This should
happen either when the program is
being closed down or at some
point before, possibly due to user
request. Because of this, you must
keep track of all dynamically
loaded packages to enable you to
unload them. Some simple form of
list should do the trick. The IDE
uses lists to keep track of lots of
things, including loaded packages,
property editors, components
editors, component classes and
expert objects (or interfaces
implemented by them).

The other primary point is that if
any dynamically loaded package
creates objects or registers
classes, then these must be
destroyed and unregistered
respectively when the package is
unloaded. This is of utmost impor-
tance as the code that implements

type
TIExpert = class(TInterface)
public
...
function GetName: string; virtual; stdcall; abstract;
function GetIDString: string; virtual; stdcall; abstract;
function GetState: TExpertState; virtual; stdcall; abstract;
procedure Execute; virtual; stdcall; abstract;

end;
TExpertRegisterProc = function(Expert: TIExpert): Boolean;

var LibraryExpertProc: TExpertRegisterProc = nil;
procedure RegisterLibraryExpert(Expert: TIExpert);
begin
if @LibraryExpertProc <> nil then
LibraryExpertProc(Expert);

end;

type
IOTAWizard = interface(IOTANotifier)
['{B75C0CE0-EEA6-11D1-9504-00608CCBF153}']
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;

end;
TWizardRegisterProc = function(const Wizard: IOTAWizard): Boolean;

var LibraryWizardProc: TWizardRegisterProc = nil;
procedure RegisterPackageWizard(const Wizard: IOTAWizard);
begin
if Assigned(LibraryWizardProc) then
LibraryWizardProc(Wizard);

end;

➤ Above: Listing 4 ➤ Below: Listing 5

48 The Delphi Magazine Issue 46

the methods of the objects and
classes will vanish when the pack-
age is removed from memory. The
same would be true if you set any
function pointers in the program to
point at code in a dynamic pack-
age. So when you unload a package
you need to ensure that either the
package cleans up after itself, or
the program cleans up on behalf of
the package.

There seem to be two common
ways of attending to the timely
departure of objects created by a
dynamically loaded package. Let’s
see how they work.

Tracking Objects By Address
The first approach is exemplified
in the aforementioned demo appli-
cation on the Borland website. The
demo is simple. The package has a
form in it, and the form class is reg-
istered into the global class list
with RegisterClass. The program
loads the package, calls GetClass to
translate a string version of the
package form class name into a
class reference, and then calls its
constructor to produce the form.
RegisterClass was examined in the
aforementioned Fatal Startup Error
article from Issue 30.

The form was created with the
Application object as the owner.
When the package needs to be
unloaded, the program iterates
through the Application object’s
Components array (all the forms and
components owned by it), looking
for a form whose definition lives in
the package. In an attempt to be
generic, the program doesn’t com-
pare the form’s class name with the
previously used string. Instead, for
each form, it uses the ClassType
method to get a class reference to
the class type. A class reference is
actually a pointer to the class VMT,
and a few other bits and pieces, all
of which will live in the package
address space, if this is the
package’s form.

The code then performs some
Windows API magic to see if the
base address of the memory block
occupied by what the class refer-
ence points to is the same as the
base address of the memory
occupied by the package (Listing
6). If it is, the form comes from the

package, and so is freed. When the
loop through Application.Compo-
nents is done, the package is
unloaded.

The code certainly seems to
work, but I think it could be slightly
shorter. It calls ClassName from a
class, to get a string containing the
class name. Then it passes that
back to GetClass, to ensure that a
class reference is returned that has
been previously registered. I sus-
pect you get the same effect by
simply calling ClassType, to return
a class reference directly. Granted
there is no assurance that the class
is registered, but that’s not the
important point. The key thing is
that the class reference contains
the address that may be found to
match that of the package.

This approach of using Virtual
Query is also used by a routine in
the Classes unit. UnRegisterModule
Classes (called in Listing 6) loops
through the registered classes,
removing those that were regis-
tered by the specified package.

Tracking Objects By Group
An alternative way to deal with a
number of items manufactured by
a particular package is to do what
the IDE does with items installed
through the Open Tools API. Take
another look at Listings 2 and 3.
Pay particular attention to the
records copied from the DsgnIntf
unit, used to keep track of the prop-
erty and component editors.

Notice they both have a Group
field, declared as an Integer. Also
notice that when this field gets
initialised by the relevant registra-
tion routine, in both cases the
value comes from something
called CurrentGroup. This is a non-
local variable declared in the
Classes unit, with an initial value of
-1. A comment nearby describes

this variable as holding the current
design group.

When the IDE is asked to load up
a package (or is about to load a
package it remembers from the
previous session), it calls the
NewEditorGroup, as defined in the
DsgnIntf unit. The idea is that each
package is given a unique number,
called a design group or editor
group.

Whenever a package calls a
registration routine, such as those
described earlier in this article, the
registration routine adds the
group number (to identify which
package it came from) into the
manufactured registration record.

The key point here is that when a
package needs to be unloaded,
Delphi can loop through all these
lists holding the registration
records describing things regis-
tered by packages. When it comes
across something with a group
number that corresponds to the
package in question, any tracked
resources can be deleted safely,
and those registration records can
be removed from the list.

The FreeEditorGroup procedure
in DsgnIntf does just this. It loops
through the property editor, com-
ponent editor and property
mapper list, tidying up anything
that belongs to the passed in
design group.

As packages are unloaded,
group numbers are freed up, and
can be used again by any packages
which are loaded later. NewEditor
Group uses a TBits object to main-
tain these group numbers (a pri-
vate variable called EditorGroup
List in the DsgnIntf unit).

In your own applications, you
can make use of NewEditorGroup
and CurrentGroup, although you

procedure UnLoadAddInPackage(Module: THandle);
var
I: Integer;
M: TMemoryBasicInformation;

begin
{ Make sure there are no instances of any classes from Module instantiated, if
so free them. This assumes that the classes are owned by the application. }

for I := Application.ComponentCount - 1 downto 0 do begin
VirtualQuery(GetClass(Application.Components[I].ClassName), M, SizeOf(M));
if (Module = 0) or (HModule(M.AllocationBase) = Module) then
Application.Components[I].Free;

end;
UnRegisterModuleClasses(Module);
UnloadPackage(Module);

end;

➤ Listing 6

50 The Delphi Magazine Issue 46

will have to re-implement Free-
EditorGroup to loop through your
own package-related lists. Given
that EditorGroupList is not avail-
able from the DsgnIntf unit, you
may also need to re-implement
NewEditorGroup (or an equivalent)
to ensure efficient use of the freed
up bits in the TBits object, if that is
what you choose to use.

Dave Jewell briefly mentioned
this CurrentGroup variable in his
column in Issue 30, Beating The
System: Exploring Delphi’s Closed-
Tools API, Part 2. He also referred to
an internal IDE method, Unregister
ExpertGroup, that unloads all
experts related to a given editor
group, which is much the same as
what we see happening for prop-
erty/component editors in the
FreeEditorGroup procedure.

The App That Jack Built
Now all the groundwork has been
completed, and we can consider
ourselves jacks of all (package-
related) trades, we can progress
onto a sample package-based dis-
tributed dynamic application. The
finished application that we are
working towards is on the disk, as
per usual, but I should mention
something about the files.

Because of certain differences in
package management by the
Delphi 3 and Delphi 4 IDEs, I have
supplied two sets of files, one for
each version. The unit files are sup-
plied once only, but each project
and package file is supplied twice.
If it has a 3 at the end of its name,
then it is for Delphi 3. If it has a 4 at
the end, then it is for Delphi 4 (or

possibly later). I’ll be referring to
the project/package names with
the 4 at the end, but unless noted
otherwise everything applies
equally to the Delphi 3 versions.

In order to distinguish packages
designed for this particular appli-
cation from normal Delphi
packages, or those for other appli-
cations, I have decided to prefix
them with BL, so a file mask of
BL*.BPL (or BL*.DPL for Delphi 3
packages) will locate them.

The main application on the disk
is called AppProject4.dpr. The
main form is called (unimagina-
tively) MainForm, and its form unit is
called AppMainFormU.pas. The user
interface is sparse: there is a menu
and a button on the single tab
sheet of a page control; the menu
has an exit option (which calls
Application.Terminate) and a Load
Module... option (see Figure 2).

Loading Packages
This Load Module... menu item
launches another form from the
application (ModuleLoadForm in unit
AppModuleLoadFormU) whose job is
to locate extra application mod-
ules and load them.

Of course the program could
have dispensed with this form and
simply searched for appropriate
files to load. In this case, I went for
the manual load approach.

The form attempts to be reason-
ably similar to the Delphi package
loading form (Figure 1 again) in
that it has Add... and Remove
buttons, and a listbox that will
show which packages are cur-
rently loaded. The listbox shows
the package descriptions and,

when one is selected, its file name
is shown (trimmed to fit under the
listbox if necessary).

The code in the event handlers
of these buttons and the listbox is
simple enough, it involves calls to
other more involved routines in
the AppSupportU helper unit, as
Listing 7 shows. The listbox event
handler will make more sense after
reading the following paragraph.

The LoadCustomPackage routine
makes a call to LoadPackage (from
Sysutils). LoadPackage returns a
HModule used to identify the pack-
age. Once the package has been
loaded, a record describing the
package is set up and added to a
TList object called PackageList.
Listing 8 shows all the code relat-
ing to this routine. You can also
see that a check is made to verify
that the requested package has
not already been loaded, before
committing to loading it.

This could equally be managed
using a simple object to represent
the package, with fields for the
module, description etc. The
object destructor could ensure the
package gets unloaded.

When the package is success-
fully loaded, a new group number
is set up, to facilitate easy tracking
of installed items that came from
this package. Two routines,
NewAppGroup and FreeAppGroup, see
to this, working with a TBits object
called AppGroupList to efficiently
manage group numbers, ensuring
freed up group numbers are
re-used. FreeAppGroup will be
where we eventually ensure all

➤ Figure 2: The sample
application dynamically loads
packages as well.

procedure TModuleLoadForm.BtnAddPackageClick(Sender: TObject);
begin
if DlgOpenPackage.Execute then begin
LoadCustomPackage(DlgOpenPackage.FileName);
FormatPackagesAsDisplayList(LstPackages.Items)

end
end;
procedure TModuleLoadForm.BtnRemovePackageClick(Sender: TObject);
begin
if LstPackages.ItemIndex <> -1 then begin
UnloadCustomPackage(
HModule(LstPackages.Items.Objects[LstPackages.ItemIndex]));

FormatPackagesAsDisplayList(LstPackages.Items)
end

end;
procedure TModuleLoadForm.LstPackagesClick(Sender: TObject);
begin
//FileCtrl.MinimizeName inserts dots to shorten
//a long path name for display purposes
LblPackageFileName.Caption := MinimizeName(
TPackageRec(PackageList[LstPackages.ItemIndex]^).FileName,
Canvas, LstPackages.Width)

end;

➤ Listing 7

June 1999 The Delphi Magazine 51

package-manufactured objects are
disposed of sensibly.

The package description is
extracted by the SysUtils routine
GetPackageDescription. This is
used to display in the module load
form listbox in Figure 3, rather like
Delphi does in Figure 1.

Unloading Packages
Looking back at Listing 7, the other
mentioned routines, UnloadCustom
Package and FormatPackagesAs
DisplayList, are shown in Listing 9.
UnloadCustomPackage undoes the
work of LoadCustomPackage, calling
FreeAppGroup, unloading the pack-
age from memory and then delet-
ing the package description record
from PackageList. The AppSupportU
unit’s finalisation routine (called
as the main form is closing down)
in Listing 8 will unload dynamically
loaded packages that are still

hanging around using calls to
UnloadCustomPackage.

The routine FormatPackagesAs
DisplayList fills a passed-in
TStrings object with package
descriptions for all loaded pack-
ages. This is used by the module
load form to fill up the listbox after
loading or unloading a package. As
well as just storing the package
description as the string, the
module handle is also stored in the
Objects array. This allows the form
to successfully call UnloadCustom
Package when the Remove button is
pressed, the routine takes a
module handle.

The module load form also
ensures that, if compiled under
Delphi 3, the open dialog uses .DPL
extensions for package files
instead of .BPL extensions, using
conditionally compiled code in the
form’s OnCreate event handler.

Keeping Track Of Packages
Another aspect of the AppProject4
application is that it remembers
which packages have been loaded.
When the main form closes, details
of all the packages that are still
open are written in the registry
before they get unloaded by the
AppSupportU finalisation routine.
Also, when the main form starts
up, it reads all the known packages
from the same registry section and
loads them, after package support
has been initialised. Listing 10 has
the main form event handlers, and
the support routines they call.

This is exactly what Delphi does.
Both Delphi 3 and 4 have a Known
Packages section in the registry,
listing add-in packages that imple-
ment components etc. Delphi 4
also has a Known IDE Packages sec-
tion, for packages implementing
portions of the IDE itself.

Calling Package
Registration Routines
As I mentioned before, when
Delphi loads a package, it iterates
through the units in the package,
looking for Register procedures,
calling them as it finds them. You
might have cause to wonder
whether you can also locate an
arbitrary routine in your dynami-
cally loaded packages, and exe-
cute it. If you are used to playing
with DLLs, you may consider that a

type
PPackageRec = ^TPackageRec;
TPackageRec = record
FileName,
Description: String;
Module: HModule;
Group: Integer;

end;
EPackageLoadError = class(EPackageError);

var
PackageList: TList;
AppGroupList: TBits = nil;

function NewAppGroup: Integer;
begin
if AppGroupList = nil then
AppGroupList := TBits.Create;

CurrentGroup := AppGroupList.OpenBit;
AppGroupList[CurrentGroup] := True;
Result := CurrentGroup;

end;
procedure FreeAppGroup(Group: Integer);
begin
//Destroy any objects that were created by this group
//...(to be implemented)...
if (Group >= 0) and (Group < AppGroupList.Size) then
AppGroupList[Group] := False;

end;
// Simple wrapper for SysUtils.LoadPackage which also adds
// to the package list
function LoadCustomPackage(const Name: String): HModule;
var

P: PPackageRec;
Loop: Integer;

begin
for Loop := 0 to PackageList.Count - 1 do
with TPackageRec(PackageList[Loop]^) do
if AnsiCompareFileName(Name, FileName) = 0 then
raise EPackageLoadError.CreateFmt(
'Package already loaded:'#13' %s'#13' %s',
[FileName, Description]);

Result := LoadPackage(Name);
New(P);
P.Module := Result;
P.FileName := Name;
P.Description := GetPackageDescription(PChar(Name));
CurrentGroup := NewAppGroup;
P.Group := CurrentGroup;
PackageList.Add(P)

end;
procedure InitializePackageSupport;
begin
PackageList := TList.Create; //Create package list
RegisterPagesProc := InternalRegisterPages

end;
procedure FinalizePackageSupport;
begin
while PackageList.Count > 0 do //Unload packages
UnloadCustomPackage(PPackageRec(PackageList[0]).Module);

PackageList.Free; //Delete package list
AppGroupList.Free;
PageFormList.Free //Free page control form list

end;

➤ Listing 8

➤ Figure 3: The application keeps a list of all loaded packages.

52 The Delphi Magazine Issue 46

package is a special form of DLL,
and be tempted to pass a target
routine name to GetProcAddress,
but this in itself would not be
enough. There could be many rou-
tines of the same name made avail-
able from a number of units
contained in the package, and they
wouldn’t all be exported with the
same name.

Before examining how to suc-
cessfully access a routine in some
arbitrary dynamically loaded pack-
age, we should really look at the
issue of whether this should be
done at all. Yes, it is a fact that
Delphi calls the Register routine
from any units contained in the
package, but this was really a
forced decision, for backwards
compatibility. The Delphi 1 and 2
component libraries used the Reg-
ister routine as the mechanism for
component authors to install their
wares. Now that Delphi employs

packages, old component source
still needs to work, so Delphi must
locate these Register routines and
call them.

However, the intention of the
Delphi package mechanism is a
way of partitioning one application
into manageable executable
portions without affecting the
semantics of the program in any
way. Despite packages being
implemented as DLLs, you should
not think of them as such, instead
consider them as a linker option
that distributes code across binary
modules, but without changing
source code or organisation.

You should not concern yourself
with calling from the EXE to the
package DLL, you just call some-
thing in a unit and Delphi sorts out
appropriate code to cross module
boundaries where necessary.
Implementing packages as DLLs
was convenient for Borland to do

so they could take advantage of
the Windows DLL loader to do the
runtime linking. Implementing
their own linking using compiler-
generated code would have no
doubt been very complex and very
difficult to ensure reliability with.

Borland R&D advise that if you
want DLL operations (like locating
a routine in a package DLL and call-
ing it), then you should use DLLs.
The Delphi IDE only accesses Reg-
ister in this DLL-like fashion.
Every other form of inter-package
communication is done through
unit initialisation sections and
function pointer callbacks, such as
RegisterComponents and Register
LibraryExpert.

Their suggestion is to do as
Delphi mostly does. Define a regis-
tration function in package A,
required to be used by all pack-
ages you want to dynamically load.
In dynamically loaded package B,
call the registration function. B will
be statically linked to A, due to the
package requirement clause, so
this is a simple function call set up
by the linker. In the case of Delphi
and the previously mentioned
function pointer callbacks, pack-
age A is VCL30.DPL or VCL40.BPL,
where the registration routine is
defined in DsgnIntf or ExptIntf,
and package B is any design-time
package.

In many cases, if the require-
ment is for a registration routine to
be called, you can use a unit initial-
isation section instead. Unlike
units contained in an implicitly
linked package, all units contained
in a dynamically loaded package
will be initialised regardless of

{ Code to take package list and extract a displayable subset. Target TStrings
object has descriptions added, as well as module handles (in Objects array) }

procedure FormatPackagesAsDisplayList(List: TStrings);
var Loop: Integer;
begin
List.BeginUpdate;
try
List.Clear;
for Loop := 0 to PackageList.Count - 1 do
with TPackageRec(PackageList[Loop]^) do
List.AddObject(Description, TObject(Module))

finally
List.EndUpdate

end
end;
{ Simple wrapper for SysUtils.UnloadPackage which also removes from package list}
procedure UnloadCustomPackage(PackageModule: HModule);
var Loop: Integer;
begin
for Loop := 0 to PackageList.Count do
if PPackageRec(PackageList[Loop]).Module = PackageModule then begin
FreeAppGroup(PPackageRec(PackageList[Loop]).Group);
UnloadPackage(PackageModule);
Dispose(PackageList[Loop]);
PackageList.Delete(Loop);
Break

end
end;

➤ Above: Listing 9 ➤ Below: Listing 10

procedure TMainForm.FormShow(Sender: TObject);
begin
InitializePackageSupport;
LoadPackagesStoredInRegistry

end;
procedure TMainForm.FormHide(Sender: TObject);
begin
StorePackagesInRegistry;
FinalizePackageSupport

end;
const
RegPath = 'Software\Oblong\AppProject';
RegSection = 'Known Modules';

procedure LoadPackagesStoredInRegistry;
var
Pkgs: TStrings;
Loop: Integer;

begin
with TRegIniFile.Create(RegPath) do
try
Pkgs := TStringList.Create;
try
ReadSection(RegSection, Pkgs);

for Loop := 0 to Pkgs.Count - 1 do
LoadCustomPackage(Pkgs[Loop])

finally
Pkgs.Free

end
finally
Free

end
end;
procedure StorePackagesInRegistry;
var
Loop: Integer;

begin
with TRegIniFile.Create(RegPath) do
try
EraseSection(RegSection);
for Loop := 0 to PackageList.Count - 1 do
with TPackageRec(PackageList[Loop]^) do
WriteString(RegSection, FileName, Description)

finally
Free

end;
end;

June 1999 The Delphi Magazine 53

whether or not anything defined
within them is accessed.

However, there are downsides
to this. There may be a possibility
that other units have not executed
their own initialisation sections
when yours does, meaning some
things may not be set up as you
like. Also, the code will always exe-
cute whether you want it to or not
and you cannot re-execute this
code without unloading and
reloading the package.

Accessing One
Routine In A Package
So let’s say you decide that you
really do want to locate some rou-
tine in a unit of your package, or
even a routine in all the units in
your package. What is the correct
approach? We’ll try the easier one
first, one specific routine in one
specific unit in the package. Unfor-
tunately the approach differs for
Delphi 3 and 4.

Delphi packages export symbols
to allow access to all routines,
methods, classes, and variables.
Since there may be symbols
defined with the same name in
more than one unit, the exported
symbol name includes the identi-
fier name and the unit name. Delphi
3 manufactures the export name
using the following pseudo-call to
Format, where HashValue is the com-
piler’s internal symbol version
hash value:

Format(‘%s.%s@%.8x’, [UnitName,
IdentifierName, HashValue])

It seems to be impossible to
pre-calculate this hash number, so
the easiest thing is to add the
target function into a package,
compile it to a .DPL file and then
run TDump across it, looking for the
list of exports. In the case of a Reg-
ister routine, you will find it
encoded as:

Format(‘%s.Register@51F89FF7’,
[UnitName])

Delphi 4 takes a different
approach. Because of the
requirement to have package
compatibility with C++Builder 4,
Inprise chose to use C++

name-mangling on the symbols
(but also to include the unit name
in the mangled result). Name
mangling is a process where the
routine’s signature is textually
encoded to create a unique symbol
name for the linker and export list.
This includes all the parameter
types, the return type and also the
calling convention.

Whilst this means that we can
rely on C++Builder 4 and Delphi 4
generating the same export name
for a given routine, the name man-
gling stuff is compiler version
dependent and subject to change
on a whim, so you can readily fall
foul of any future changes.

With version 4, a routine called
Registerwith no parameters, using
the default register calling con-
vention (fastcall for C program-
mers), is exported using this
pseudo-call to generate the string:

Format(‘@%s@Register$qqrv’,
[UnitName])

Again, we can use TDump to help us
out here, but be warned. TDump will
un-mangle the exported package
routines by default, showing all the
parameter types and calling
conventions (in C syntax), unless
you use the -m command-line
switch.

So now we can pass this gener-
ated name to GetProcAddress,
locate the routine and call it.

Calling A Routine
In All Units Of A Package
So now we know how to get at a
routine, how do we know all the
units compiled into a package? For
the answer, we can again check out
the SysUtils unit. This implements
another useful package-related
function called GetPackageInfo.
The Delphi help documents this as
a routine that enumerates over all
the contained units (and required
packages) in the package, calling a
supplied callback routine for each
one. Dave Jewell mentions the
routine in his column in Issue 27,
Beating the System: EXE Sniffing,
The Story Continues.

Listing 11 shows the callback
routine, and also the call to
GetPackageInfo that has been

inserted into the LoadCustom-
Package function (originally from
Listing 8). If you study the listing,
you can see that in versions of
Delphi later than 3, when a symbol
name is mangled, it always formats
the unit name with an initial capital
and the rest in lower case. These
export names are case-sensitive,
so we need to follow this rule.

You will also see that in my
sample packages, the registration
routine is called BLRegister. Since
exports are indeed case-sensitive,
any package that implements such
a registration/initialisation routine
must use the same capitalisation.
The same point is made about the
Delphi registration routine, Regis-
ter, in the Delphi 4 Components
entry of Issue 42’s Delphi Clinic.

Three of the sample packages
supplied have a BLRegister rou-
tine. The first package
BLTestPackage4.bpl uses it to dis-
play a message box. The other
ones, BLPageFormPackage4.bpl
and BLPageFormPackage4.bpl,
use BLRegister to actually install
their additional functionality.

Writing An Extender Package
So here we have a new term that
I’ve just made up J. An extender
package is one that is intended to
be dynamically loaded for the
purposes of extending the
functionality of an application.

The application that goes with
this article comes with a few
extender packages. The source
code is supplied (of course) and I
have also supplied compiled ver-
sions of these packages (and the
application) for Delphi 3 and 4.
These binary files are quite small
thanks to them all being compiled
with package support.

My First Extender Package
The first package to test the waters
with is very primitive. The
BLTestPackage4.bpl (as previ-
ously mentioned) contains one
simple unit. To prove the princi-
ple, the initialisation and finalis-
ation sections display a simple
message box to indicate they are
executing. Also, the unit has a
BLRegister routine which also dis-
plays a simple message box.

54 The Delphi Magazine Issue 46

There’s not much more to say
about this package, apart from the
fact that it can indeed be loaded
and unloaded at will by the applica-
tion, with the message boxes pop-
ping up at the appropriate times.
With the concept working, let’s try
some real extender packages.

Class References
And Inheritance
The first real extender package we
will look at will implement an exam-
ple of the idea described above in
the section Customising Tooltips.
As mentioned, a variable is used by
the application, but which is
defined using a class reference
type, instead of a specific class
type. In terms of the ‘package A,
package B’ notation used earlier,
package A will define a usable class
and a class reference type, plus an
appropriate variable. The applica-
tion requires package A. Package B
also requires package A, and imple-
ments a descendant of the base
class defined in package A.

When package B is dynamically
loaded, it overwrites the class ref-
erence variable in package A with
the class defined in package B.
When the application creates an
instance of the class using the class
reference variable, it will in fact
create an instance of package B’s
class, something it was not
compiled with. In the example in
hand, package A is called
CorePackage4.bpl and the add-in
package B is called
BLInheritedFormPackage4.bpl.
The classes used for this example
are actually form classes, the

example shows how form inheri-
tance can be used by an extender
package to enhance the functional-
ity of an application.

CorePackage4.bpl defines a form
BaseForm of type TBaseForm in the
BaseFormU unit. It also defines a
class reference type TBaseForm
Class in terms of TBaseForm and
defines a TBaseFormClass variable,
BaseFormClass, initialised to TBase
Form. When the BLInherited
FormPackage4.bpl package gets
loaded, the initialisation section
of its InheritedFormU unit (which
defines a TInheritedForm class,
inherited from TBaseForm) sets the
BaseFormClass variable to
TInheritedForm.

The button on the application’s
main form (see Figure 2) creates a
form through the class reference
variable:

with BaseFormClass.Create(
Application) do
try
ShowModal

finally
Free

end

In this case, the application
already had some functionality,
which was extended by the
package. Figure 4 shows what hap-
pens when the button is pushed
without the new package loaded
and Figure 5 shows the effect of the
button after having loaded
BLInheritedFormPackage4.bpl.

When the package is unloaded
the finalisation section of
InheritedFormU resets the
BaseFormClass variable back to
TBaseForm.

Abstract Classes
And Polymorphism
In the case above, the original form
class TBaseForm was a normal,
usable class. It was actually used
by the original application (as per
Figure 4). You can make the class
much more extendible by defining
appropriate virtual methods.

In fact, you could take this whole
idea to a much more abstract level.
Your application’s main required
package (package A) can define
completely abstract classes or
interface types. Dynamically
loaded packages can define
classes inherited from the abstract
base classes, or classes which
implement those interfaces, and
register them. The application,
having been told to register these
new classes, can now use this new
functionality.

Your application only deals with
the common abstract base class.
Assuming you put enough thought
into the class, to make it extensi-
ble, dynamic packages can do a lot
to extend the application. OOP is a
very powerful technique here, and
is exactly that used by Delphi
when dealing with experts. It is
only aware of the abstract class
TIExpert, or the IOTAWizard
interface.

Registering
Items From A Package
The next extender package creates
a form object, then passes it to a
registration routine in the applica-
tion’s CorePackage4.bpl package.
The idea is that the form will be
used as a new page on the page
control (which defaults to having
only one page, and is partially

procedure PackageInfoProc(const Name: string;
NameType: TNameType; Flags: Byte; Param: Pointer);

type
TRegisterProc = procedure;

var
RegisterProc: TRegisterProc;
UnitName, ProcName: String;

const
{$ifdef Ver100} //Delphi 3
ExportName = '%s.BLRegister@51F89FF7';

{$else}
ExportName = '@%s@BLRegister$qqrv';

{$endif}
begin
if NameType = ntContainsUnit then begin
{$ifdef Ver100} //Delphi 3
//Delphi 3 packages don't use name-mangling
//Unit names maintain their original case
UnitName := Name;

{$else}
//Delphi 4+ mangles names - the unit name is all
//lower case, with an initial capital letter
UnitName := LowerCase(Name);

if Length(UnitName) > 0 then
UnitName[1] := UpCase(UnitName[1]);

{$endif}
ProcName := Format(ExportName, [UnitName]);
@RegisterProc := GetProcAddress(PPackageRec(
Param).Module, PChar(ProcName));

if Assigned(RegisterProc) then
try
RegisterProc

except
on E: Exception do
ShowMessageFmt('Error %s registering %s package',
[E.ClassName, PPackageRec(Param).FileName])

end
end

end;
function LoadCustomPackage(const Name: String): HModule;
begin
...
GetPackageInfo(P.Module, P, PackageFlags,
PackageInfoProc);

end;

➤ Listing 11

June 1999 The Delphi Magazine 55

visible in Figures 2, 3, 4 and 5). To
make a form act as the client area
of a tab sheet in a page control
relies upon setting a number of its
properties.

Because this form object is to be
immediately added to the page
control, as discussed earlier in
Package Registrations, the registra-
tion routine is implemented via a
function pointer callback. The
CorePackage4.bpl package’s
CommonHookU unit defines a routine
much like Delphi’s Register
LibraryExpert routine. Assuming a
pointer (RegisterPagesProc) has
been set up with a value,
RegisterPages will call it, passing a
desired tab sheet caption and the
form object, along with the current
package group (Listing 12).

The application has the real reg-
istration routine in the AppSupportU
unit, called InternalRegisterPages.
It is implemented in much of a simi-
lar way to Delphi’s Register
ComponentEditor and Register
PropertyEditor. It uses a list
(PageFormList) of records of type
TPageFormRec to maintain the form
objects and their associated
package group.

Now that a package is actually
manufacturing objects, we need to
ensure they get tidied up correctly.
This means that the FreeAppGroup
procedure from Listing 8 needs to

be extended to achieve this
requirement. The extra code
loops through PageFormList,
checking the Group field of the
TPageFormRec record. If it finds a
record from the specified pack-
age group, it frees the page form,
removes the record from the list
and frees the record from
memory.

Of course, if we are managing
objects through interfaces, we
simply need to assign nil to the
interface reference, and the
object will make sure it destroys
itself.

This tidying up code is in the
UnloadPages procedure, shown
with InternalRegisterPages in
Listing 13.

This package, BLPageForm
Package4.bpl, registers this new
page form object in its BLRegister
routine using this statement:

RegisterPages(
‘Windows &version’,
[TNewPageForm.Create(nil)])

The specifics of the actual form
implemented by this extender
package are irrelevant, strictly
speaking, in the context of this arti-
cle. However, I will mention that
the form is a very simple
aqua-coloured form, which dis-
plays some standard Windows ver-
sion information stored in
variables in the SysUtils unit.
Figure 6 shows the new form in situ
in the page control, along with the
module load form highlighting this
particular package, and showing
its file name.

Non-Specific Add-In Packages
The final package to look at is
BLAddInPackage4.bpl. This pack-
age takes the approach of not using
any formal installation or registra-
tion routine to install itself.
Instead, it acts in a more nefarious
manner. As described in the earlier
section Arbitrary Add-In Packages,

this package locates the Applica-
tion object of the application, then
uses the MainForm property to find
the main form. It then continues
locating objects until it finds what
it is looking for, and manipulates
those components how it likes, pri-
marily to insert new objects into
the user interface.

In this case, it adds a new menu
into the main form’s main menu to
allow additional behaviour to be
accessed by the user. All the nec-
essary techniques for this are
explained in the article on writing
packages like this for Delphi’s IDE,
from Issue 27, so I won’t hark on
about them here. Instead, I’ll refer
you back to that article.

As it happens, the new menu
item’s job is to invoke a form that
also comes from the add-in pack-
age. This form is an object brows-
ing form (see Figure 7). The idea is
to help you identify the layout of
the application you are writing an
add-in for.

When the form is visible, the
component ownership hierarchy
is shown at the top left of the form.
The Applicationobject is at the top
of this hierarchy, followed by all
components it owns, and so on.
When you select a component, the
other portions of the form come
into play. The bottom right tree
view shows the component’s
inheritance hierarchy, all the way
up to TObject. The grid on the right
of the form is a mock-up of the
Object Inspector and shows the
values of the component’s pub-
lished properties. If the selected
component is a visual component
that is a parent of other
components, the bottom left hier-
archy shows the parent/child
relationships.

I knocked up this form in front of
the TV one evening, as something
to do. However, from this under-
stated beginning I have found it to

var
RegisterPagesProc: procedure(Group: Integer; const Page: String;
PageForms: array of TForm) = nil;

procedure RegisterPages(const Page: String; PageForms: array of TForm);
begin
if Assigned(RegisterPagesProc) then
RegisterPagesProc(CurrentGroup, Page, PageForms);

end;

➤ Listing 12

➤ Figure 4: A form as
implemented in the program.

➤ Figure 5: A new inherited
form, dynamically loaded.

56 The Delphi Magazine Issue 46

be an extremely useful tool (in this
arena of dynamically loaded pack-
ages). As a consequence I threw it
into this article’s sample project to
allow you to also take advantage of
it. As mentioned, the add-in pack-
age makes the form available from
a new menu item on the applica-
tion’s main form. It installs itself
from within the BLRegister routine
(in the AddInU unit).

To make the package even more
useful, I added another unit,
AddInIDEU. This implements an IDE
expert which is registered from the
normal Delphi Register routine. So
you can load this package both into
the sample application that goes
with this article, and also into
Delphi itself. Figure 8 shows the
form after having been installed
into Delphi, looking at Delphi’s
main form (called AppBuilder).

Final Note
One last thing... If you load up the
sample projects and packages and
compile them, you must check all
the search paths to ensure Delphi

can always find the right files. Also,
be sure to compile Core-
Package4.bpl before compiling the
application (which requires it). Of
course, you also need to ensure
that any application you make
using this dynamic package load-
ing technique is itself compiled
with package support enabled.

Summary
The primary objective of this
rather lengthy article was to give
some ideas on how to write exten-
sible applications using the Delphi
3 (and higher) package mechanism
along the same lines as the Delphi
IDE itself. Using abstract classes
and initialised non-local class
reference variables, you can pro-
vide standard back doors into the
application. But a package-based
application designed for extensi-
bility can also be tweaked and tin-
kered with in any number of ways
by handy (or indeed potentially
harmful) additional modules.

If I’ve done a good job, you
should be able to see that this

approach could provide a poten-
tially very powerful mechanism
for supplying your customers
with an application which can
vary in its offered functionality.
Customers could purchase mod-
ules as they require them. Addi-
tionally, you can supply

type
PPageFormRec = ^TPageFormRec;
TPageFormRec = record
Group: Integer;
PageForm: TForm;
TabSheet: TTabSheet;

end;
var PageFormList: TList = nil;
procedure InternalRegisterPages(Group: Integer; const Page:
String; PageForms: array of TForm);

var Loop: Integer;
begin
for Loop := Low(PageForms) to High(PageForms) do
LoadPage(Group, Page, PageForms[Loop])

end;
procedure LoadPage(Group: Integer; const Page: String;
PageForm: TForm);

var P: PPageFormRec;
begin
if PageFormList = nil then
PageFormList := TList.Create;

New(P);
P.Group := CurrentGroup;
P.PageForm := PageForm;
P.TabSheet := TTabSheet.Create(nil);
PageFormList.Insert(0, P);
P.TabSheet.Parent := MainForm.PageControl;
P.TabSheet.PageControl := MainForm.PageControl;
P.TabSheet.Caption := Page;
MainForm.PageControl.ActivePage := P.TabSheet;
with P.PageForm do begin
Hide;

Left := 0;
Top := 0;
BorderStyle := bsNone;
Parent := P.TabSheet;
WindowState := wsMaximized;
Show

end;
end;
procedure UnloadPages(Group: Integer);
var
I: Integer;
P: PPageFormRec;
PageCtl: TPageControl;

begin
if not Assigned(PageFormList) then Exit;
I := PageFormList.Count - 1;
while I > -1 do begin
P := PageFormList[I];
if P.Group = Group then begin
PageCtl := P.TabSheet.PageControl;
//Switch to a page that we are not removing
if Assigned(PageCtl) and
(PageCtl.ActivePage = P.TabSheet) then
PageCtl.SelectNextPage(False);

P.PageForm.Free;
P.TabSheet.Free;
PageFormList.Delete(I);
Dispose(P);

end;
Dec(I);

end;
end;

➤ Listing 13

➤ Figure 6: Custom pages
installed dynamically.

customers with initial functional-
ity early on in a product develop-
ment cycle, which can then be
added to as development contin-
ues, by supplying more and more
packages that implement the
remaining functionality.

For extra reading, check out the
numerous references that have
been made throughout the text to
other articles in back issues of The
Delphi Magazine. Alternatively,
just look up an appropriate topic,
such as property editors on The
Delphi Magazine Collection CD.

Acknowledgements
Some of the information and
advice used in this article is based
on comments made by Danny
Thorpe and Allen Bauer, both
Senior Inprise R&D engineers.

Brian Long is an independent
consultant and trainer. You can
reach him at brian@blong.com
Copyright @ 1999 Brian Long.
All rights reserved.

June 1999 The Delphi Magazine 57

➤ Above: Figure 7: Add-in package’s browser form.
➤ Below: Figure 8: Browsing the Delphi IDE.

	A Fine Example
	Delphi Design-Time Packages: What Do They Do?
	Installing Components
	Installing Property Editors
	Installing Component Editors
	Installing Experts
	Package Registrations
	Customising Tooltips
	Arbitrary Add-In Packages
	Forget The IDE... What About Our Application?
	Requirements Of Dynamically Loaded Packages
	Tracking Objects By Address
	Tracking Objects By Group
	The App That Jack Built
	Loading Packages
	Unloading Packages
	Keeping Track Of Packages
	Calling Package Registration Routines
	Accessing One Routine In A Package
	Calling A Routine In All Units Of A Package
	Writing An Extender Package
	My First Extender Package
	Class References And Inheritance
	Abstract Classes And Polymorphism
	Registering Items From A Package
	Non-Specific Add-In Packages
	Final Note
	Summary
	Acknowledgements

